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Abstract

The lagging motion of nonlinear oscillators with respect to the externally driven field, which has never been
discussed previously, was treated analytically and the calculation results were compared with the observed
results. Such lagging motion may occur in nonlinear systems whose behavior crucially depends on the
frequency of the applied force. The lagging motion of the nonlinear oscillator with respect to the harmonically
driven field made the oscillator respond in a way that reduced the effect of the applied field. The calculation
considering the lagging motion yielded proper results in the expansion ratio and trajectories in phase plane for
the oscillating bubble under ultrasound and the frequency spectrum for a forced inverted pendulum.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Forced oscillation of nonlinear oscillator has been studied extensively by many investigators
because it possesses many interesting phenomena such as bifurcation, period doubling, strange
attractor, and chaos [1,2]. It is well known that linear oscillators, such as harmonic oscillators,
respond linearly to an external forcing field. However, the response of a nonlinear oscillator to the
external forcing field is complex and hard to be analyzed.

Recently, it was found that a bubble, which is a typical nonlinear oscillator driven by
ultrasound, responded quite differently from what we predicted by a conventional method. In
see front matter r 2004 Elsevier Ltd. All rights reserved.
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fact, the maximum radius and the expansion ratio Rmax=R0 (maximum radius divided by
equilibrium radius) obtained from an air bubble at a driving frequency of 12.926 kHz and driving
amplitude of 1.33 atm at a water temperature of 23:5 �C were considerably less than the predicted
values by the Rayleigh–Plesset equation or the Keller–Miksis equation with a conventional
numerical technique [3]. Also, the calculated frequency spectrum of the inverted pendulum by the
conventional method is quite different from the frequency spectrum observed.

In this study, the lagging motion of nonlinear oscillator to the externally driven field was treated
analytically and the calculation results were compared with the observed results. Lagging motion
between the nonlinear oscillator and the harmonically driven field was found in this study. Such
lagging, in turn, made the nonlinear oscillator respond in a way that reduced the effect of the
applied force so that this phenomenon may be considered as the ‘‘Le Châtelier’s principle’’ [4] in
nonlinear systems.
2. Bubble motion under ultrasound

For the bubble wall motion, the Rayleigh–Plesset equation [RP] using the assumption of the
polytropic behavior for gas inside the bubble and the Keller–Miksis equation using the analytical
solutions of the Navier–Stokes equations [KMNS] yielded the same bubble radius–time curve
except near the collapse point and the subsequent bouncing motion even though the gas
temperature and pressure predicted by the two methods were quite different [5]. Consider the
problem that occurred during the integration of the bubble wall motion under driving frequency
f d ; which is different from the natural frequency of bubble motion 1=t0; defined later in Eq. (5b),
with the simple Rayleigh–Plesset equation.

2.1. Rayleigh–Plesset [RP] equation

The modified RP equation [6], taking account of the compressible behavior of liquid is given by
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where Rb is the instantaneous bubble radius, C1 is the sound speed in the liquid, r1 is the density
of medium, P1 is the ambient pressure and s and m are the surface tension and dynamic viscosity
of liquid, respectively. The pressure of the driving sound Ps may be represented by a sinusoidal
function such as

PsðtÞ ¼ �PA sinodt; (2)

where PA is the amplitude of the ultrasound, od ¼ 2pf d and f d is the frequency of the driving
ultrasound. For the calculation of the gas pressure inside the bubble, Hilgenfeldt et al. [7]
employed the following van der Waals equation with a polytropic exponent of G:
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where h ¼ R0=8:5 is the hard core van der Waals’ radius for air, R0 is an equilibrium radius, and
the polytropic index G is taken to be unity. Certainly, Eq. (3) which assumes the isothermal and
uniform behavior of the gas inside the bubble is not adequate to estimate the gas temperature
inside the bubble around the collapse point [8]. The isothermal behavior of the gas inside bubble
was valid only in the expansion phase up to the maximum radius [6,9]. To calculate the
temperature, they employed the following relation using the variable polytropic index of gp which
is related to the Péclet number at the bubble wall.

Tb

T1

¼
R3

0 � h3

R3
b � h3

 !gp�1

: (4)

The polytropic index of gp; which depends on the bubble radius Rb; wall velocity _Rb and the gas
temperature Tb; has maximum value about 1.6. With this value of gp; one may estimate the gas
temperature at the collapse point from Eq. (4).

2.2. A procedure of integration for the RP equation

Eq. (1) may not be integrated numerically properly without normalization of the physical
variables by using the corresponding characteristic quantities. These quantities which are
naturally chosen characterize the bubble motion. For instance, normalization of the governing
equations may be done as follows [9]. The radius is compared to the equilibrium radius R0; and
the temperature and pressure are related to the ambient properties T1 and P1; respectively.
Other characteristic quantities may be chosen as follows:

Velocity: u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1=r1

p
; (5a)

Time: t0 ¼ R0=u0 ¼ R0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1=r1

p
; (5b)

Dynamic viscosity: m0 ¼ P1R0=u0; (5c)

and

Surface tension: s0 ¼ P1R0: (5d)

After the normalization procedure, the Rayleigh–Plesset equation using the nondimensional
variables except the variables in the cosine function such as f d and t becomes
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Usually the time t and the driving frequency f d in the sinusoidal term in Eq. (6) were normalized
by t0 and 1=t0; respectively [10,11] so that the nondimensional form of the sinusoidal term becomes
cosð2pftÞ where f ¼ f dt0 is the nondimensional frequency which is quite different from the original
driving frequency. Also, the bubble motion described by Eq. (6) is normalized by t0 for time scale
so that the calculated nondimensional time for bubble motion can be recovered by t0 (single time
normalization method). However, such single time normalization results in moving in phase with
the driving ultrasound or moving under different driving frequency, which might cause ‘‘artificial
resonance’’. It is also noted that the expansion ratio [10] and consequently the gas temperature and
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pressure and the bubble wall velocity at the collapse point increase considerably by the reduction
in the nondimensional frequency f dt0 with such normalization method.

The artificial resonance effect due to improper choice of the characteristic frequency of the
driving ultrasound during numerical evaluation for the bubble wall motion can be avoided.
Another normalization method to avoid the artificial resonance is as follows. In general, the
characteristic frequency of the driving force f 0 to be chosen differs from the natural frequency of
bubble oscillation 1=t0: The time t and the driving frequency f d in the sinusoidal term in Eq. (6)
are normalized by 1=f 0 and f 0; respectively so that the sinusoidal term remains as the same form
as cosð2pftÞ but with different nondimensional frequency f ¼ f d=f 0: Because the bubble wall
motion described by Eq. (6) is also normalized by t0 with this normalization method but the
nondimensional time is recovered by 1=f 0 in numerical procedure (two time normalization
method), there is a lagging time of the bubble motion with respect to the characteristic time of the
applied ultrasound f 0; which is defined as [5]

t ¼ 1=f 0 � t0: (7)

Eq. (7) gave reasonable results when one took t as comparable value of t0: Eq. (7) means that the
bubble motion is characterized by the time scale of t0 þ t; having lagging time of t with respect to
the characteristic time scale of applied field, 1=f 0:

A physical basis of the lagging motion for the bubble behavior under ultrasound may be
described as follows. It is well known that the bubble will be viscoelastic if the bubble is
deformable, even if the gas inside and the surrounding liquid are both Newtonian [12]. The
characteristic time which represents the retarded mechanical response [13] of the bubble may be
defined as [12]

tc ¼
Rbm
s

: (8)

For the gas bubble with an equilibrium radius of 5mm in water, the characteristic time is about
0:1ms; which is close to the value obtained from Eq. (7). Neither the surface tension nor the
viscosity value of water only affects the motion of the bubble of micrometer size very much.
However, the combined effect of the surface tension and the viscosity enhances the stability of the
sonoluminescing gas bubble significantly, which shows a subtle nature of bubble motion in
ultrasound.
2.3. Keller–Miksis formulation with the analytical solution for the Navier–Stokes equation

For bubble wall motion, the equation from Keller and Miksis formulation [14] and the
analytical solutions for the Navier–Stokes equations for the gases inside bubble (KMNS) [15] in
spherical symmetry may be utilized. The Keller–Miksis equation which accounts for the effects of
liquid compressibility is as follows:
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where Ub is the speed of the bubble wall, Cb is the sound speed of liquid at the bubble wall, and
liquid pressure on the external side of the bubble wall PB is related to the pressure inside the
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bubble wall Pb by PB ¼ Pb � 2s=Rb � 4mUb=Rb: The above equation based on acoustical
assumption is valid as long as the bubble wall velocity is less than the sound speed at the bubble
wall Cb: In the KMNS formulation, the time-dependent pressure and temperature at the bubble
center may be obtained by solving the mass, momentum, and energy equation for the gas inside
bubble [16]. Also the heat transfer through the bubble wall was considered by solving the mass
and energy equation for the liquid adjacent to the bubble wall [17]. Eq. (9) can be normalized
using the same method discussed in previous section.

The two time normalization method introduced above gives a physical approximation which
represents the lagging behavior of bubble motion (a nonlinear oscillator) under ultrasound. Such
lagging may occur in the other nonlinear oscillator systems such as an inverted pendulum, which
will be discussed next.
3. Forcing motion of inverted pendulum

Consider a damped, harmonically driven, inverted pendulum which was analyzed and tested by
Beckert et al. [18] and was also tested experimentally by Chancellor et al. [19]. Detailed discussion
on the experimental set up for an inverted pendulum is in Chancellor et al. [19]. The equation of
motion for the inverted pendulum tested is given by

I0
€yþ Ct

_yþ Kty� M0gRd sin y ¼ Kty0 sin½Odt	; (10)

where I0 is the disk mass moment of inertia, Ct is the damping coefficient, Kt is the torsional
spring constants, M0 is the disk added mass, Rd is the disk radius, and y0 is the angular
displacement excitation of the inverted acceleration. In Eq. (10), Od denotes the driving frequency
on the inverted pendulum and g is the gravitational constant. The actual physical parameters
measured from the experimental apparatus are shown in Table 1.

Nondimensionalizing Eq. (10) with respect to tP; the characteristic time scale of the inverted
pendulum, we can write Eq. (10) as
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Choosing the natural frequency of the inverted pendulum OP as

OP ¼
1

tP

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Kt=I0

p
: (12)
Table 1

Measured parameter values for inverted pendulum [19]

Disk moment of inertia, I0 0:00147 kg m2

Torsional spring constant, Kt 0.0183 N m/rad

Added mass, M0 0.0267 kg

Disk radius, R0 0.0845 m

Angular displacement excitation, y0 0.094 rad

Driving frequency range 0.1–1.0 Hz
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Eq. (10) with a value of Ct=I0 ¼ 0:45 and an angular excitation value y0 ¼ 0:094; becomes

d2y
dt
2

þ 0:1275
dy
dt


þ y� 1:208 sin y ¼ 0:094 sin½OdtPt
	: (13)

This inverted pendulum which showed chaotic response at Ct=I0 ¼ 0:45 created two stable fixed
points at approximately �60� from the vertical with an added mass of 0.0267 kg [19].

If the driving frequency Od in the sinusoidal term in Eq. (13) is normalized by the natural
frequency of the inverted pendulum OP ¼ 1=tP; the sinusoidal term becomes sinðO


dt
Þ where
O


d ¼ Od=OP is the nondimensional forcing frequency (single time normalization method).
However, if we nondimensionalize the driving frequency and the time in the sinusoidal term in Eq.
(13) as another characteristic forcing frequency OðaOPÞ and the corresponding time scale 1=O
(two time normalization method) respectively, the lagging time between the oscillator motion and
the applied force would be generated, such as

tP ¼
1

O
� tP (14)

so that the sine term in Eq. (13) becomes sin½O

dt
	 where O


d ¼ Od=O:
4. Calculation results and discussion

The calculation results obtained by using the two kinds of normalization methods of the
governing equation for the bubble motion described were presented and compared with the
observed results. As shown in Fig. 1, the expansion ratio calculated by the Rayleigh–Plesset
equation without considering the lagging time or t ¼ 0 is as much as 17.2 at the ultrasound
amplitude of 1.33 atm and driving frequency of 12.926 kHz. Almost the same results is obtained
by the KMNS method with zero lagging time. On the other hand the expansion ratio calculated
by KMNS method for the bubble of an equilibrium radius of 5mm under the same amplitude and
frequency of ultrasound becomes as small as 9.76 with the lagging time of 0:39ms: Similar results
can be obtained using RP with a lagging time of 0:39ms: As shown in Fig. 1, the result obtained
with the finite lagging time agrees well with the observed results obtained by CCD camera with a
microscope [3]. For the oscillating bubble of R0 ¼ 5:0mm in the medium of r1 and P1; the
characteristic frequency of the bubble motion 1=t0 is about 2:0 � 106=s while the characteristic
frequency of the applied ultrasound f 0 is about 1:124 � 106=s if lagging time of 0:39ms is used.
The observed results confirm that the bubble does not move in phase with the applied ultrasound
so that the measured expansion ratio is about 9.76. Certainly one cannot obtain this observed
value of the expansion ratio with the single time normalization method or no lagging time (t ¼ 0)
of the bubble motion with respect to the driving ultrasound.

In Fig. 2, the observed and calculated trajectories in phase plane for an air bubble of R0 ¼

1:3mm at PA ¼ 1:12 atm and f d ¼ 28:84 kHz are shown. In the observed trajectories [20] shown in
Fig. 2a, there are several inner loops showing a period-three oscillation. However, the calculated
trajectory by RP with no lagging time shows just a period-one oscillation as can be seen in Fig. 2b.
This trajectory is quite different from the trajectory obtained by RP with a lagging time t ¼
2:64ms as shown in Fig. 2c. Fig. 2c shows similar period-three oscillation as observed although the
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Fig. 1. Radius versus time for one cycle of an air bubble oscillations at PA ¼ 1:33 atm; f d ¼ 12:926 kHz and water

temperature of 23:5 �C: The equilibrium radius of the air bubble was estimated to be about 5:0mm: Full circles indicate

the data obtained by CCD camera with a microscope [3], full line for the calculation results by RP and KMNS without

lagging time ðt ¼ 0Þ; and dotted line for the calculation results by KMNS with t ¼ 0:39ms:

Fig. 2. Trajectories in phase space for an air bubble oscillation for R0 ¼ 1:3mm at PA ¼ 1:12 atm and f d ¼ 28:84 kHz:

(a) observed results by light scattering method [20], (b) calculation results by RP without lagging time, (c) calculation

results by RP with t ¼ 2:64ms; (d) calculation results by KMNS with t ¼ 2:64ms:

S.W. Karng et al. / Journal of Sound and Vibration 287 (2005) 117–128 123
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calculated values of the maximum and minimum velocities in the phase plane trajectory were quite
different from the observed one. Such large values in velocities happen because the RP equation
with the polytropic index does not account for thermal damping due to the finite heat transfer
through the bubble wall. On the other hand, the KMNS method which included the heat transfer
adjacent the bubble wall yielded proper trajectory and much less velocity values in phase plane, as
shown in Fig. 2d.

The fact that a proper lagging time is needed to describe the bubble behavior even for smaller
equilibrium radius may be confirmed convincingly by inspecting the case of R0 ¼ 0:8mm at PA ¼

1:10 atm; shown in Fig. 3a, which shows only two bouncing motion after the first minimum.
Similiar behavior of bubble as the observed one may be obtained with the relaxation time of
4:08ms either by KMNS or by RP, which is quite larger relaxation time than those employed in
previous examples as can be seen in Fig. 3b.

The lagging discussed on the bubble behavior under ultrasound may happen in another
nonlinear system. Let us consider the calculated and observed results obtained from the inverted
pendulum discussed previously. A phase portrait for the inverted pendulum at a forcing frequency
1.5 rad/s and an amplitude 0.094 rad with the single time normalization method is shown in
Fig. 4a. The corresponding Poincaré map obtained at a phase of 60� is shown in Fig. 4b. The
results shown in Fig. 4 were the last 100 cycles obtained by analyzing a sequence of 1000 cycles
with the value Ct=I0 ¼ 0:45 where chaotic response occurred in the experiment [19]. As shown in
Fig. 4a, any phase trajectory does not coincide with the other trajectories, which show typical
chaos regime. In the Poincaré section shown in Fig. 4b, a double line structure like that found in
strange attractors [1] can be seen. The trajectories and the Poincaré map in Fig. 4 show similar
results for a two-well potential [21,22]. As expected, the maximum and minimum angular
velocities were obtained at angular positions of 1 and �1 rad; respectively. However, the
calculated maximum and minimum angular velocities were 20% larger than the absolute value of
the observed velocities. Further, the calculated frequency spectrum of the inverted pendulum at
the input of a single frequency sinusoidal excitation shows a continuous spectrum of frequencies
below the single characteristic frequency with the single time normalization method, as can be
Fig. 3. Radius–time curve for air bubble of R0 ¼ 0:8mm at PA ¼ 1:10 atm and f ¼ 28:84 kHz: (a) observed data by light

scattering method [20], (b) calculated one by KMNS with relaxation time of 4:08ms (—) and by RP with relaxation time

of 4:08ms (- - -).
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Fig. 4. Trajectories in phase space (a) and Poincaré map (b) for inverted pendulum at forcing frequency 1.5 rad/s and

amplitude 0.094 rad with no lagging time.

Fig. 5. Frequency spectrum of the response of inverted pendulum at forcing frequency 1.5 rad/s and amplitude

0.094 rad with no lagging time.

S.W. Karng et al. / Journal of Sound and Vibration 287 (2005) 117–128 125
seen in Fig. 5. Although this calculation result with the single time normalization method shows
one of the characteristics of chaotic vibrations, the calculated spectrum is quite different from the
frequency spectrum of the response observed in the experiment [19].

One can obtain quite different results, as shown in Fig. 6, when one uses the two time
normalization method with a relaxation time tp ¼ 0:046 s: As shown in Fig. 6a, the trajectories in
phase plane become more ordered and are confined to a well-defined layer of phase space. The
corresponding Poincaré map shown in Fig. 6b tends to be localized into several regions. Both the
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Poincaré map in Fig. 6b and the trajectories in phase space in Fig. 6a suggest that a periodic
subharmonic orbit exists. Further the broad-band spectrum disappears to noise levels, and a 1

3
subharmonic and a 5

3
harmonic in the frequency spectrum appear instead so that this spectrum is

very similar to the spectrum calculated from the observed angular velocity data depending on
angular position [19]. In fact, the Poincaré map and the frequency spectrum obtained with the two
time normalization method may be considered as a precursor to the fully developed chaos
obtained with single time normalization as shown Figs. 4 and 5. Correct value of lagging time may
be determined by the characteristics of nonlinear systems. Therefore, lagging of the nonlinear
oscillator with respect to the sinusoidally driven field makes the oscillator respond in a way that
Fig. 6. Trajectories in phase space (a) and Poincaré map (b) for inverted pendulum at forcing frequency 1.5 rad/s and

amplitude 0.094 rad with lagging time tP ¼ 0:046 s:

Fig. 7. Calculated and observed (inset) [19] frequency spectrum of the response of inverted pendulum at forcing

frequency 1.5 rad/s and amplitude 0.094 rad with lagging time tP ¼ 0:046 s:
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reduces the effect of the applied force, which may be explained as the Le Châtelier’s principle in
broad sense (Fig. 7).
5. Conclusion

Forced oscillation of nonlinear oscillations such as oscillation of a single bubble under
ultrasound and motion of an inverted pendulum under harmonically driven force was studied
analytically. The calculation results with an assumption that the nonlinear oscillator moves in
phase with the harmonically driven field overpredicted the amplitude of response. However, the
calculation considering the lagging motion of the nonlinear oscillator with respect to the applied
field yielded proper results for the expansion ratio and the trajectories in phase plane for the
bubble under ultrasound, and frequency spectrum of the response for the forced inverted
pendulum.
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[6] R. Löfstedt, B.P. Barber, S.J. Putterman, Toward a hydrodynamic theory of sonoluminescence, Physics of Fluids A

5 (1993) 2911–2928.

[7] S. Hilgenfeldt, D. Lohse, M.P. Brenner, Phase diagram for sonoluminescing bubbles, Physics of Fluids 8 (1996)

2806–2808.

[8] S. Putterman, P.G. Evans, G. Vasquez, K. Weninger, Is there a simple theory of sonoluminescence?, Nature 409

(2001) 782–783.

[9] H. Kwak, H. Yang, An aspect of sonoluminescence from hydrodynamics theory, Journal of the Physical Society of

Japan 64 (1995) 1980–1992.

[10] S. Hilgenfeldt, D. Lohse, Predictions for upscaling sonoluminescence, Physical Review Letters 82 (1999)

1036–1039.

[11] A. Prosperetti, Y. Hao, Modeling of spherical gas bubble oscillations and sonoluminescence, Philosophical

Transactions of the Royal Society of London Series A 357 (1999) 223–230.

[12] R.G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, New York, 1999.

[13] G. Strobl, The Physics of Polymers, Springer, Berlin, 1997.

[14] J.B. Keller, M. Miksis, Bubble oscillations of large amplitude, Journal of the Acoustical Society of America 68

(1980) 628–633.



ARTICLE IN PRESS

S.W. Karng et al. / Journal of Sound and Vibration 287 (2005) 117–128128
[15] H. Kwak, J. Na, Hydrodynamic solutions for a sonoluminescing gas bubble, Physical Review Letters 77 (1996)

4454–4457.

[16] H. Kwak, J. Na, Physical processes for single bubble sonoluminescence, Journal of the Physical Society of Japan 66

(1997) 3074–3083.

[17] J.C. Ryu, H. Kwak, Bifurcation phenomena for the damped bubble oscillation in periodically driven pressure

fields, in: H.H. Bau, L.A. Bertram, S.A. Korpela (Eds.), Bifurcation Phenomena and Chaos in Thermal Convection,

HTD-214, ASME, New York, 1992, pp. 1–8.

[18] S. Beckert, U. Schock, C.-D. Schulz, T. Weidlich, F. Kaiser, Experiments on the bifurcation behavior of a forced

nonlinear pendulum, Physics Letters A 107 (1985) 347–350.

[19] R.S. Chancellor, R.M. Alexander, S.T. Noah, Detecting parameter ranges using experimental nonlinear dynamics

and chaos, Journal of Vibration and Acoustics 118 (1996) 375–383.

[20] B. Kim, J. Jeon, H. Kwak, Stability and selective bifurcation for a gas bubble oscillating under ultrasound, Journal

of the Physical Society of Japan 68 (1999) 1197–1204.

[21] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,

Springer, Berlin, 1983.

[22] J. Awrejcewicz, Bifurcation and Chaos in Coupled Oscillators, World Scientific, Singapore, 1991.


	Lagging motion of forced nonlinear oscillators
	Introduction
	Bubble motion under ultrasound
	RayleighndashPlesset [RP] equation
	A procedure of integration for the RP equation
	KellerndashMiksis formulation with the analytical solution for the NavierndashStokes equation

	Forcing motion of inverted pendulum
	Calculation results and discussion
	Conclusion
	Acknowledgements
	References


